Saturday, June 11, 2005

[tech4all] wmv and dat files!

hi bharath thanks for clearing my doubt!
cheers
mona


Free antispam, antivirus and 1GB to save all your messages
Only in Yahoo! Mail: http://in.mail.yahoo.com

Yahoo! Groups Links

[tech4all] 8085 -indicator

Dear Friends

I am a E.C.E. student entering in to third year. I want
to do a project ,i.e.,

A water level indicator using 8085 microprocessor and
8255 interface.
Can anyone help me in this regard, like how to get
about it?
With regards
B.Prasana


Yahoo! Groups Links

<*> To visit your group on the web, go to:
http://groups.yahoo.com/group/tech4all/

<*> To unsubscribe from this group, send an email to:
tech4all-unsubscribe@yahoogroups.com

<*> Your use of Yahoo! Groups is subject to:
http://docs.yahoo.com/info/terms/

Friday, June 10, 2005

Re: [tech4all] diff!

On 6/10/05, mona shivparu <monashivparu@yahoo.co.in> wrote:
>
> hi everyone!
> what is the difference between .wmv extension and dat
> extension ? its related to video files however i want to know the exact
> meaning of it!
> cheers
> mona
>
> ________________________________
> Free antispam, antivirus and 1GB to save all your messages
> Only in Yahoo! Mail: http://in.mail.yahoo.com
> ________________________________
> Yahoo! Groups Links
>
>
> To visit your group on the web, go to:
> http://groups.yahoo.com/group/tech4all/
>
> To unsubscribe from this group, send an email to:
> tech4all-unsubscribe@yahoogroups.com
>
> Your use of Yahoo! Groups is subject to the Yahoo! Terms of Service.
>
>

Wmv is a general video data wrapper. The dat extension generally just
means data. Although it is used for VCD (Mpeg) video files, it is not
specifically video.

Orion

--
http://orionrobots.co.uk - Build Robots

Online Castle Building RPG -
http://www.darkthrone.com/recruit.dt?uid=V30311I30328J30379X30379E30260X30277


Yahoo! Groups Links

<*> To visit your group on the web, go to:
http://groups.yahoo.com/group/tech4all/

<*> To unsubscribe from this group, send an email to:
tech4all-unsubscribe@yahoogroups.com

<*> Your use of Yahoo! Groups is subject to:
http://docs.yahoo.com/info/terms/

[tech4all] Glossary of Digital media

A glossary of terms related to the Digital media industry.

Click on a term to read its desription.

Source: http://www.afterdawn.com/glossary/

Regards,

bharath

---------------------------------------------------------------------------------

Select a term to see the explanation

  • 1080i
  • 16:9
  • 2-pass
  • 3GP
  • 3ivX
  • 4:3
  • 720i
  • 720p
  • AAC
  • ABR
  • AC3
  • Advanced Simple Profile
  • AIFF
  • Anamorphic
  • Angles
  • ASF
  • Asian Silvers
  • Aspect ratio
  • ASPI
  • ASX
  • AUDIO_TS
  • Authoring
  • AVC
  • AVI
  • B Frames
  • BetaMax
  • BIN/CUE Images
  • Bitrate
  • BitTorrent
  • Blu-Ray
  • Bootlegs
  • Cam
  • Capture
  • CBR
  • CCE
  • CD+G
  • CD-DA
  • CD-Plus
  • CDA
  • CDV
  • cDVD
  • CGA
  • Chanserv
  • Chaoji VCD
  • Chapters
  • China Video Disc
  • CIF
  • Coaster
  • Codec
  • Combo Drive
  • Compression
  • Container
  • Cropping
  • CSS
  • CVD
  • D1
  • DAT
  • DCC Get
  • DCC Send
  • Decode
  • Deinterlace
  • Demultiplexing
  • Demux
  • Digital Rights Management
  • Digital8
  • DivX
  • DIVX (original)
  • DivX ;-)
  • DMCA
  • Dolby
  • Dolby Digital
  • DRM
  • DSDL
  • DSML
  • DSSL
  • DTS
  • DTV
  • DVB
  • DVB-C
  • DVB-H
  • DVB-S
  • DVB-T
  • DVCD
  • DVD
  • DVD+R
  • DVD+R DL
  • DVD+RW
  • DVD-10
  • DVD-14
  • DVD-18
  • DVD-5
  • DVD-9
  • DVD-Audio
  • DVD-MP3
  • DVD-R
  • DVD-R DL
  • DVD-R9
  • DVD-RAM
  • DVD-Rip
  • DVD-RW
  • DVD-SVCD
  • DVD-VCD
  • DVD-Video
  • DVD/TV Combo
  • DVI
  • DVI-A
  • DVI-D
  • DVI-I
  • EAC
  • ed2k
  • EDGE
  • Elementary Streams
  • Encode
  • EZ-D
  • FastTrack
  • FireWire
  • Firmware
  • FLAC
  • FourCC
  • fps
  • Frame
  • Framerate
  • Frameserve
  • Fserves
  • GPRS
  • H.264
  • Half D1
  • HD-DVD
  • HDTV
  • HE-AAC
  • Hi8
  • HQ-VCD
  • I Frame
  • ID3
  • IEEE.1394
  • IFO
  • IFPI
  • Interlace
  • Interleaving
  • INTERNAL
  • Inverse Telecine
  • IRC
  • ISO
  • ISO 9660
  • IVTC
  • KVCD
  • LAME
  • LaserDisc
  • Letterbox
  • Limited
  • Linear PCM
  • Lossless Compression
  • Lossy Compression
  • LPCM
  • M-JPEG
  • M1V
  • M2V
  • M3U
  • M4IF
  • Macrovision
  • MD5
  • MIDI
  • miniDV
  • miniDVD
  • Motion Estimation
  • Mount Rainier
  • MOV
  • MP2
  • MP3
  • MP3+G
  • MPA
  • MPAA
  • MPEG
  • MPEG-1
  • MPEG-2
  • MPEG-21
  • MPEG-4
  • MPEG-7
  • MPV
  • Multi-pass encoding
  • Multiplexing
  • Musepack (MP+)
  • Muxing
  • NFO
  • Nickserv
  • Noise
  • NTSC
  • NUKED
  • Ogg
  • Ogg Tarkin
  • Ogg Theora
  • Ogg Vorbis
  • OGM
  • Overburn
  • Overlay
  • P2P
  • PAL
  • Pan & Scan
  • PDVD
  • Pixels
  • Progressive
  • PROPER
  • QCIF
  • QuickTime
  • RAMDAC
  • RAR
  • RAW
  • RealVideo
  • Region code
  • REPACK
  • Resolution
  • RIAA
  • RIFF-WAV
  • RPC-1
  • RPC-2
  • SACD
  • SBR
  • Screener
  • SECAM
  • SFV
  • Simple Profile
  • SNR
  • SSDL
  • SSSL
  • Streaming
  • STV
  • SuperAudioCD
  • SuperVCD
  • SuperVHS
  • SuperVideoCD
  • SVCD
  • SVHS
  • Telecide
  • Telecine
  • Telesync
  • THX
  • torrent
  • Transcoding
  • TV-RIP
  • UDF
  • UMD
  • V2000
  • VBR
  • VCD
  • VHS
  • VHSRip
  • VideoCD
  • VIDEO_TS
  • VOB
  • Vorbis
  • VP3
  • VQF
  • WAV
  • Widescreen
  • Windows Media
  • WMA
  • WMV
  • Workprint
  • Wrapper
  • XCD
  • XDCC Bots
  • XSVCD
  • XVCD
  • XviD
  • ZIP

  •  


      My Email :  bharath_m_7@yahoo.co.in 
      My Blogs: Tech blog   |  Fun blog


    Discover Yahoo!
    Have fun online with music videos, cool games, IM & more. Check it out!

    Yahoo! Groups Links

    [tech4all] Difference between WMV and DAT files

    This mail is in response to the mail by "monashivparu@yahoo.co.in".
    Please try to include informative description in the E-mails subject.
    Let the description be as informative as possible.

    WMV stands for Windows Media Video -- developed and controlled by
    Microsoft. WMV is a generic name of Microsoft's video encoding
    solutions and doesn't necessarily define the technology what it uses
    -- since version 7 (WMV7) Microsoft has used its own flavour of MPEG-4
    video encoding technology (not very surprising, it's not compatible
    with other MPEG-4 technologies..). DivX video format is originally
    based on hacked WMV codec.

    Thats about the WMV format.

    Now, for the .DAT format , i made some testing with it.
    See, The .DAT extension can be used as an universal extension for
    DATA files.
    The data can be of any sort such as video , sound or anything!
    In the case of VCDs, the .DAT files contain MPG streams, that is,
    Video information.
    You can just rename the .DAT files in VCDs into .MPG and play it with
    any media player.
    Remember, DAT extension is not supported by Winamp, but it support MPG.
    Anyway, DAT format used in the conext of digital video is MPG format only.

    I hope you are clear with my explanation.

    And , dont forget to put suitable subjects for your mails!

    Regards,
    bharath


    Yahoo! Groups Links

    <*> To visit your group on the web, go to:
    http://groups.yahoo.com/group/tech4all/

    <*> To unsubscribe from this group, send an email to:
    tech4all-unsubscribe@yahoogroups.com

    <*> Your use of Yahoo! Groups is subject to:
    http://docs.yahoo.com/info/terms/

    [tech4all] diff!

    hi everyone!
                        what is the difference between .wmv extension and dat extension ? its related to video files however i want to know the exact meaning of it!
    cheers
    mona


    Free antispam, antivirus and 1GB to save all your messages
    Only in Yahoo! Mail: http://in.mail.yahoo.com

    Yahoo! Groups Links

    Re: [tech4all] debug it.....

    the variable lcm is not defined


    bharath rajsingh <bharath1187@rediffmail.com> wrote:


    hi 2 all
    here is a simple program in c .find the error in this program.
    this is a program 2 find lcm for 2 nos.the concept i have used is

    lcm = product of 2 nos./gcd
    #include<stdio.h>
    #include<conio.h>
    main()
    {
    long int a,b,x,y;
    printf("enter 2 nos\n");
    scanf("%d %d",&a,&b);
    x=a;
    y=b;
    while(a!=b)
    {
    if(a>b)
    a=a-b;
    else
    b=b-a;
    }
    lcm=(x*y)/a;
    printf("the lcm is%d",lcm);
    }
    in this prog. if i give small values i get the result.if i give the values like 200 & 250 im not getting the result.why is it so?
    please debug the error here.

    take care 
    bye
    BHARATH..


    Discover Yahoo!
    Have fun online with music videos, cool games, IM & more. Check it out!

    Yahoo! Groups Links

    Thursday, June 09, 2005

    Re: [tech4all] debug it.....

    On 8 Jun 2005 14:26:05 -0000, bharath rajsingh
    <bharath1187@rediffmail.com> wrote:
    >
    >
    >
    > hi 2 all
    > here is a simple program in c .find the error in this program.
    > this is a program 2 find lcm for 2 nos.the concept i have used is
    >
    > lcm = product of 2 nos./gcd
    > #include<stdio.h>
    > #include<conio.h>
    > main()
    > {
    > long int a,b,x,y;
    > printf("enter 2 nos\n");
    > scanf("%d %d",&a,&b);
    > x=a;
    > y=b;
    > while(a!=b)
    > {
    > if(a>b)
    > a=a-b;
    > else
    > b=b-a;
    > }
    > lcm=(x*y)/a;

    The above statement may be going above limits with huge numbers.
    Still, values like 250 and 200 and working fine on linux. I dont know
    how its on windows. You may need to modify that line or use some kind
    of optimisation.

    HTH,

    -jm

    --
    Jemshad O K http://www.jemshad.com
    Home : +91-495-2415098
    Office : +91-484-2427971, 2428918
    Mobile: +91-9895662373

    "I know Karate, Kung-Fu and 47 other dangerous words"


    Yahoo! Groups Links

    <*> To visit your group on the web, go to:
    http://groups.yahoo.com/group/tech4all/

    <*> To unsubscribe from this group, send an email to:
    tech4all-unsubscribe@yahoogroups.com

    <*> Your use of Yahoo! Groups is subject to:
    http://docs.yahoo.com/info/terms/

    Re: [tech4all] The size of the Internet

    Nice information post in my eyes


    Yahoo! Groups Links

    Wednesday, June 08, 2005

    [tech4all] Interesting info abt Formula 1 cars

    Krishnan <itskrishnan@gmail.com> wrote:
    To: <AimAtTheStars@yahoogroups.com>
    From: "Krishnan" <itskrishnan@gmail.com>
    Date: Wed, 8 Jun 2005 11:11:49 -0700 (Pacific Daylight Time)
    Subject: Formula 1 cars

     
    Here are some interesting facts about Formula 1 racing


        01. An F1 car is made up of 80,000 components, if it were assembled
        99.9% correctly, it would still start the race with 80 things wrong!


        02. Formula 1 cars have over a kilometer of cable, linked to about
        100 sensors and actuators which monitor and control many parts of the car.


        03. An F1 car can go from 0 to 160 kph AND back to 0 in FOUR seconds!!!!!!!


        04. F1 car engines last only for about 2 hours of racing mostly
        before blowing up on the other hand we expect our engines to last us
        for a decent 20yrs on an average and they quite faithfully
        DO.... that is the extent to which the engines r pushed to perform...


        05. When an F1 driver hits the brakes on his car he experiences
        retardation or deceleration comparable to a regular car driving
        through a BRICK wall at 300kmph !!!


        06. An average F1 driver looses about 4kgs of weight after just one
        race due to the prolonged exposure to high G forces and temperatures
        for little over an hour (Yeah that is right!!!)


        07. At 550kg a F1 car is less than half the weight of a Mini.


        08. In an F1 car the engine typically revs upto 18000 rpm,(the
        piston travelling up and down 300 times a second!!) wheres cars like
        the palio, maruti 800,indica rev only upto 6000 rpm at max. That is 3  times slower.


        09. The brake discs in an F1 car have an operating temperature of
        approximately 1000 degrees Centigrade and they attain that temp while
        braking before almost every turn...that is why they r not made of steel
        but of carbon fibre which is much more harder and resistant to wear
       and tear and most of all has a higher melting point.


        10. If a water hose were to blow off, the complete cooling system
        would empty in just over a second.


        11. Gear cogs or ratios are used only for one race, and are replaced
        regularly to prevent failure, as they are subjected to very high degrees of stress.


        12. The fit in the cockpit is so tight that the steering wheel must
        be removed for the driver to get in or out of the car. A small latch
        behind the wheel releases it from the column. Levers or paddles for
        changing gear are located on the back of the wheel. So no gear stick!
        The clutch levers are also on the steering wheel, located below the gear paddles.


        13. To give you an idea of just how important aerodynamic design and
        added downforce can be, small planes can take off at slower speeds
        than F1 cars travel on the track.


        14. Without aerodynamic down force, high-performance racing cars have
        sufficient power to produce wheel spin and loss of control at 160
        kph. They usually race at over 300 kph.


        15. The amount of aerodynamic down force produced by the front and
        rear wings and the car underbody is amazing. Once the car is
        travelling over 160 kph, an F1 car can generate enough down force to
        equal it's own weight. That means it could actually hold itself to the CEILING of a
        tunnel and drive UPSIDE down!


        16. In a street course race like the Monaco grand prix, the
        down force provides enough suction to lift manhole covers. Before
        the race all of the manhole covers on the streets have to be welded down
        to prevent this from happening!


        17. The re-fuelers used in F1 can supply 12 liters of fuel per
        second. This means it would take just 4 seconds to fill the tank of
        an average 50 liter family car.They use the same refueling rigs
        used on US military helicopters today.


        18. TOP F1 pit crews can refuel and change tyres in around 3
        seconds. & 8 sec to read above point.


        19. Race car tyres don't have air in them like normal car tyres.
        Most racing tyres have nitrogen in the tyres because nitrogen has a
        more consistent pressure compared to normal air. Air typically
        contains varying amounts of water Vapor in it, which affects its expansion
        and contraction as a function of temperature, making the tyre pressure unpredictable.


        20. During the race the tyres lose weight! Each tyre loses about 0.5
        kg in weight due to wear.


        21. Normal tyres last 60 000 - 100 000 km. Racing tyres are
        designed to last 90 - 120 km (That's Khandala and back).

       
       22. A dry-weather F1 tyre reaches peak operating performance (best
      grip) when tread temperature is between 900C and 1200C.(Water
      boils boils at 100C remember) At top speed, F1 tyres rotate 50 times a second.
     
     

     
     
    A Mail From             
        

    With Love

    Keep Mailing and Keep Smiling

     

                               


      My Email :  bharath_m_7@yahoo.co.in 
      My Blogs: Tech blog   |  Fun blog


    Yahoo! Mail Mobile
    Take Yahoo! Mail with you! Check email on your mobile phone.

    Yahoo! Groups Links

    [tech4all] debug it.....

     
    hi 2 all
    here is a simple program in c .find the error in this program.
    this is a program 2 find lcm for 2 nos.the concept i have used is

    lcm = product of 2 nos./gcd
    #include<stdio.h>
    #include<conio.h>
    main()
    {
    long int a,b,x,y;
    printf("enter 2 nos\n");
    scanf("%d %d",&a,&b);
    x=a;
    y=b;
    while(a!=b)
    {
    if(a>b)
    a=a-b;
    else
    b=b-a;
    }
    lcm=(x*y)/a;
    printf("the lcm is%d",lcm);
    }
    in this prog. if i give small values i get the result.if i give the values like 200 & 250 im not getting the result.why is it so?
    please debug the error here.

    take care 
    bye
    BHARATH..



    Yahoo! Groups Links

    [tech4all] The size of the Internet

    [Don't forget to read the Note at bottom!]
    The size of the Internet

    Although the Internet is the newest medium for information flows, it is the fastest growing new medium of all time, and becoming the information medium of first resort for its users. Note that the Web consists of the surface web (fixed web pages) and what Bright Planet calls the deep web (the database driven websites that create web pages on demand).

    Table 8.1: The size of the Internet in terabytes.

    Medium

    2002 Terabytes

    Surface Web

    167

    Deep Web

    91,850

    Email (originals)

    440,606

    Instant messaging

    274

    TOTAL

    532,897

    Source: How much information 2003

     

    Worldwide stat on Internet usage:

    Source: Nielsen/NetRatings via CyberAtlas

     

    Compostition of surface web:


    Source: How much information 2003

     

     

    Spam count:

     


    Source: BrightMail
    http://www.brightmail.com/spamstats.html

     

    Source:

    http://www.sims.berkeley.edu/research/projects/how-much-info-2003/internet.htm

    ----------------------------------------------------------------------------------

    Note:

    This compilation is based on the survey data collected in 2003.These are not current data.If anyone has access to current data on the above topics,please send to me or post as a comment in my blog here:

    http://email2blog.blogspot.com/2005/06/size-of-internet.html

    Regards,

    bharath

    ----------------------------------------------------------------------------------

     



      My Email :  bharath_m_7@yahoo.co.in 
      My Blogs: Tech blog   |  Fun blog


    Discover Yahoo!
    Stay in touch with email, IM, photo sharing & more. Check it out!

    Yahoo! Groups Links

    Tuesday, June 07, 2005

    [tech4all] Google Pagerank Algorithm

    The Google Pagerank Algorithm
    and How It Works

    Ian Rogers
    IPR Computing Ltd.
    ian@iprcom.com

    Introduction

    Page Rank is a topic much discussed by Search Engine Optimisation (SEO) experts. At the heart of PageRank is a mathematical formula that seems scary to look at but is actually fairly simple to understand.

    Despite this many people seem to get it wrong! In particular “Chris Ridings of www.searchenginesystems.net” has written a paper entitled “PageRank Explained: Everything you’ve always wanted to know about PageRank”, pointed to by many people, that contains a fundamental mistake early on in the explanation! Unfortunately this means some of the recommendations in the paper are not quite accurate.

    By showing code to correctly calculate real PageRank I hope to achieve several things in this response:

    1. Clearly explain how PageRank is calculated.
    2. Go through every example in Chris’ paper, and add some more of my own, showing the correct PageRank for each diagram. By showing the code used to calculate each diagram I’ve opened myself up to peer review - mostly in an effort to make sure the examples are correct, but also because the code can help explain the PageRank calculations.
    3. Describe some principles and observations on website design based on these correctly calculated examples.

    Any good web designer should take the time to fully understand how PageRank really works - if you don’t then your site’s layout could be seriously hurting your Google listings!

    [Note: I have nothing in particular against Chris. If I find any other papers on the subject I’ll try to comment evenly]

    How is PageRank Used?

    PageRank is one of the methods Google uses to determine a page’s relevance or importance. It is only one part of the story when it comes to the Google listing, but the other aspects are discussed elsewhere (and are ever changing) and PageRank is interesting enough to deserve a paper of its own.

    PageRank is also displayed on the toolbar of your browser if you’ve installed the Google toolbar (http://toolbar.google.com/). But the Toolbar PageRank only goes from 0 – 10 and seems to be something like a logarithmic scale:

    Toolbar PageRank
    (log base 10)

    Real PageRank

    0

    0 - 10

    1

    100 - 1,000

    2

    1,000 - 10,000

    3

    10,000 - 100,000

    4

    and so on...

    We can’t know the exact details of the scale because, as we’ll see later, the maximum PR of all pages on the web changes every month when Google does its re-indexing! If we presume the scale is logarithmic (although there is only anecdotal evidence for this at the time of writing) then Google could simply give the highest actual PR page a toolbar PR of 10 and scale the rest appropriately.

    Also the toolbar sometimes guesses! The toolbar often shows me a Toolbar PR for pages I’ve only just uploaded and cannot possibly be in the index yet!

    What seems to be happening is that the toolbar looks at the URL of the page the browser is displaying and strips off everything down the last “/” (i.e. it goes to the “parent” page in URL terms). If Google has a Toolbar PR for that parent then it subtracts 1 and shows that as the Toolbar PR for this page. If there’s no PR for the parent it goes to the parent’s parent’s page, but subtracting 2, and so on all the way up to the root of your site.  If it can’t find a Toolbar PR to display in this way, that is if it doesn’t find a page with a real calculated PR, then the bar is greyed out.

    Note that if the Toolbar is guessing in this way, the Actual PR of the page is 0 - though its PR will be calculated shortly after the Google spider first sees it.

    PageRank says nothing about the content or size of a page, the language it’s written in, or the text used in the anchor of a link!

    Definitions

    I’ve started to use some technical terms and shorthand in this paper. Now’s as good a time as any to define all the terms I’ll use:

    PR:

    Shorthand for PageRank: the actual, real, page rank for each page as calculated by Google. As we’ll see later this can range from 0.15 to billions.

    Toolbar PR:

    The PageRank displayed in the Google toolbar in your browser. This ranges from 0 to 10.

    Backlink:

    If page A links out to page B, then page B is said to have a “backlink” from page A.

    That’s enough of that, let’s get back to the meat…

    So what is PageRank?

    In short PageRank is a “vote”, by all the other pages on the Web, about how important a page is. A link to a page counts as a vote of support. If there’s no link there’s no support (but it’s an abstention from voting rather than a vote against the page).

    Quoting from the original Google paper, PageRank is defined like this:

      We assume page A has pages T1...Tn which point to it (i.e., are citations). The parameter d is a damping factor which can be set between 0 and 1. We usually set d to 0.85. There are more details about d in the next section. Also C(A) is defined as the number of links going out of page A. The PageRank of a page A is given as follows:

      PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

      Note that the PageRanks form a probability distribution over web pages, so the sum of all web pages' PageRanks will be one.

      PageRank or PR(A) can be calculated using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link matrix of the web.

    but that’s not too helpful so let’s break it down into sections.

    1. PR(Tn) - Each page has a notion of its own self-importance. That’s “PR(T1)” for the first page in the web all the way up to “PR(Tn)” for the last page
    2. C(Tn) - Each page spreads its vote out evenly amongst all of it’s outgoing links. The count, or number, of outgoing links for page 1 is “C(T1)”, “C(Tn)” for page n, and so on for all pages.
    3. PR(Tn)/C(Tn) - so if our page (page A) has a backlink from page “n” the share of the vote page A will get is “PR(Tn)/C(Tn)”
    4. d(... - All these fractions of votes are added together but, to stop the other pages having too much influence, this total vote is “damped down” by multiplying it by 0.85 (the factor “d”)
    5. (1 - d) - The (1 – d) bit at the beginning is a bit of probability math magic so the “sum of all web pages' PageRanks will be one”: it adds in the bit lost by the d(.... It also means that if a page has no links to it (no backlinks) even then it will still get a small PR of 0.15 (i.e. 1 – 0.85). (Aside: the Google paper says “the sum of all pages” but they mean the “the normalised sum” – otherwise known as “the average” to you and me.

    How is PageRank Calculated?

    This is where it gets tricky. The PR of each page depends on the PR of the pages pointing to it. But we won’t know what PR those pages have until the pages pointing to them have their PR calculated and so on… And when you consider that page links can form circles it seems impossible to do this calculation!

    But actually it’s not that bad. Remember this bit of the Google paper:

      PageRank or PR(A) can be calculated using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link matrix of the web.

    What that means to us is that we can just go ahead and calculate a page’s PR without knowing the final value of the PR of the other pages. That seems strange but, basically, each time we run the calculation we’re getting a closer estimate of the final value. So all we need to do is remember the each value we calculate and repeat the calculations lots of times until the numbers stop changing much.

    Lets take the simplest example network: two pages, each pointing to the other:

    Each page has one outgoing link (the outgoing count is 1, i.e. C(A) = 1 and C(B) = 1).

     

    Guess 1

    We don’t know what their PR should be to begin with, so let’s take a guess at 1.0 and do some calculations:

    d

    = 0.85

    PR(A)

    = (1 – d) + d(PR(B)/1)

    PR(B)

    = (1 – d) + d(PR(A)/1)

    i.e.

    PR(A)

    = 0.15 + 0.85 * 1
    = 1

    PR(B)

    = 0.15 + 0.85 * 1
    = 1

    Hmm, the numbers aren’t changing at all! So it looks like we started out with a lucky guess!!!

    Guess 2

    No, that’s too easy, maybe I got it wrong (and it wouldn’t be the first time). Ok, let’s start the guess at 0 instead and re-calculate:

    PR(A)

    = 0.15 + 0.85 * 0
    = 0.15

     

    PR(B)

    = 0.15 + 0.85 * 0.15
    = 0.2775

    NB. we’ve already calculated a “next best guess” at PR(A) so we use it here

    And again:

    PR(A)

    = 0.15 + 0.85 * 0.2775
    = 0.385875

    PR(B)

    = 0.15 + 0.85 * 0.385875
    = 0.47799375

    And again

    PR(A)

    = 0.15 + 0.85 * 0.47799375
    = 0.5562946875

    PR(B)

    = 0.15 + 0.85 * 0.5562946875
    = 0.622850484375

    and so on. The numbers just keep going up. But will the numbers stop increasing when they get to 1.0? What if a calculation over-shoots and goes above 1.0?

     

    Guess 3

    Well let’s see. Let’s start the guess at 40 each and do a few cycles:

      PR(A) = 40
      PR(B) = 40

    First calculation

    PR(A)

    = 0.15 + 0.85 * 40
    = 34.25

    PR(B)

    = 0.15 + 0.85 * 0.385875
    = 29.1775

    And again

    PR(A)

    = 0.15 + 0.85 * 29.1775
    = 24.950875

    PR(B)

    = 0.15 + 0.85 * 24.950875
    = 21.35824375

    Yup, those numbers are heading down alright! It sure looks the numbers will get to 1.0 and stop

    Here’s the code used to calculate this example starting the guess at 0: Show the code | Run the program

    • Principle: it doesn’t matter where you start your guess, once the PageRank calculations have settled down, the “normalized probability distribution” (the average PageRank for all pages) will be 1.0

     

    Getting the answer quicker

    How many times do we need to repeat the calculation for big networks? That’s a difficult question; for a network as large as the World Wide Web it can be many millions of iterations! The “damping factor” is quite subtle. If it’s too high then it takes ages for the numbers to settle, if it’s too low then you get repeated over-shoot, both above and below the average - the numbers just swing about the average like a pendulum and never settle down.

    Also choosing the order of calculations can help. The answer will always come out the same no matter which order you choose, but some orders will get you there quicker than others.

    I’m sure there’s been several Master’s Thesis on how to make this calculation as efficient as possible, but, in the examples below, I’ve used very simple code for clarity and roughly 20 to 40 iterations were needed!

     

    Example 1

    I’m not going to repeat the calculations here, but you can see them by running the program (yes, if you click the link the program really is re-run to do the calculations for you)

    So the correct PR for the example is:

    You can see it took about 20 iterations before the network began to settle on these values!

    Look at Page D though - it has a PR of 0.15 even though no-one is voting for it (i.e. it has no incoming links)! Is this right?

    The first part, or "term" to be techinal, of the PR equation is doing this:

      PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

    So, for Page D, no backlinks means the equation looks like this:

    PR(A)

    = (1-d) + d * (0)
    = 0.15

    no matter what else is going on or how many times you do it.

      Observation: every page has at least a PR of 0.15 to share out. But this may only be in theory - there are rumours that Google undergoes a post-spidering phase whereby any pages that have no incoming links at all are completely deleted from the index...

       

    Example 2

    A simple hierarchy with some outgoing links

    As you’d expect, the home page has the most PR – after all, it has the most incoming links! But what’s happened to the average? It’s only 0.378!!! That doesn’t tie up with what I said earlier so something is wrong somewhere!

    Well no, everything is fine. But take a look at the “external site” pages – what’s happening to their PageRank? They’re not passing it on, they’re not voting for anyone, they’re wasting their PR like so much pregnant chad!!! (NB, a more accurate description of this issue can be found in this thread)

     

    Example 3

    Let’s link those external sites back into our home page just so we can see what happens to the average…

    That’s better - it does work after all! And look at the PR of our home page! All those incoming links sure make a difference – we’ll talk more about that later.

     

    Example 4

    What happens to PR if we follow a suggestion about writing page reviews?

     

     

    Example 5

    A simple hierarchy

    Our home page has 2 and a half times as much PR as the child pages! Excellent!

    • Observation: a hierarchy concentrates votes and PR into one page

     

    Example 6

    Looping

    This is what we’d expect. All the pages have the same number of incoming links, all pages are of equal importance to each other, all pages get the same PR of 1.0 (i.e. the “average” probability).

     

    Example 7

    Extensive Interlinking – or Fully Meshed

    Yes, the results are the same as the Looping example above and for the same reasons.

     

    Example 8

    Hierarchical – but with a link in and one out.

    We’ll assume there’s an external site that has lots of pages and links with the result that one of the pages has the average PR of 1.0. We’ll also assume the webmaster really likes us – there’s just one link from that page and it’s pointing at our home page.

    In example 5 the home page only had a PR of 1.92 but now it is 3.31! Excellent! Not only has site A contributed 0.85 PR to us, but the raised PR in the “About”, “Product” and “More” pages has had a lovely “feedback” effect, pushing up the home page’s PR even further!

    • Priciple: a well structured site will amplify the effect of any contributed PR

     

    Example 9

    Looping – but with a link in and a link out

    Well, the PR of our home page has gone up a little, but what’s happened to the “More” page?

    The vote of the “Product” page has been split evenly between it and the external site. We now value the external Site B equally with our “More” page. The “More” page is getting only half the vote it had before – this is good for Site B but very bad for us!

     

    Example 10

    Fully meshed – but with one vote in and one vote out

    That’s much better. The “More” page is still getting less share of the vote than in example 7 of course, but now the “Product” page has kept three quarters of its vote within our site - unlike example 10 where it was giving away fully half of it’s vote to the external site!

    Keeping just this small extra fraction of the vote within our site has had a very nice effect on the Home Page too – PR of 2.28 compared with just 1.66 in example 10.

    • Observation: increasing the internal links in your site can minimise the damage to your PR when you give away votes by linking to external sites.
    • Principle:
      • If a particular page is highly important – use a hierarchical structure with the important page at the “top”.
      • Where a group of pages may contain outward links – increase the number of internal links to retain as much PR as possible.
      • Where a group of pages do not contain outward links – the number of internal links in the site has no effect on the site’s average PR. You might as well use a link structure that gives the user the best navigational experience.

     

    Site Maps

    Site maps are useful in at least two ways:

    • If a user types in a bad URL most websites return a really unhelpful “404 – page not found” error page. This can be discouraging. Why not configure your server to return a page that shows an error has been made, but also gives the site map? This can help the user enormously
    • Linking to a site map on each page increases the number of internal links in the site, spreading the PR out and protecting you against your vote “donations”

     

    Example 11

    Lets try to fix our site to artificially concentrate the PR into the home page.

    That looks good, most of the links seem to be pointing up to page A so we should get a nice PR.

     

    Try to guess what the PR of A will be before you scroll down or run the code.

     

     

    Oh dear, that didn’t work at all well – it’s much worse than just an ordinary hierarchy! What’s going on is that pages C and D have such weak incoming links that they’re no help to page A at all!

    • Principle: trying to abuse the PR calculation is harder than you think.

     

    Example 12

    A common web layout for long documentation is to split the document into many pages with a “Previous” and “Next” link on each plus a link back to the home page. The home page then only needs to point to the first page of the document.

    In this simple example, where there’s only one document, the first page of the document has a higher PR than the Home Page! This is because page B is getting all the vote from page A, but page A is only getting fractions of pages B, C and D.

    • Principle: in order to give users of your site a good experience, you may have to take a hit against your PR. There’s nothing you can do about this - and neither should you try to or worry about it! If your site is a pleasure to use lots of other webmasters will link to it and you’ll get back much more PR than you lost.

    Can you also see the trend between this and the previous example? As you add more internal links to a site it gets closer to the Fully Meshed example where every page gets the average PR for the mesh.

    • Observation: as you add more internal links in your site, the PR will be spread out more evenly between the pages.

     

    Example 13

    Getting high PR the wrong way and the right way.

    Just as an experiment, let’s see if we can get 1,000 pages pointing to our home page, but only have one link leaving it…

    Yup, those spam pages are pretty worthless but they sure add up!

    • Observation: it doesn’t matter how many pages you have in your site, your average PR will always be 1.0 at best. But a hierarchical layout can strongly concentrate votes, and therefore the PR, into the home page!

    This is a technique used by some disreputable sites (mostly adult content sites). But I can’t advise this - if Google’s robots decide you’re doing this there’s a good chance you’ll be banned from Google! Disaster!

    On the other hand there are at least two right ways to do this:

    1. Be a Mega-site

    Mega-sites, like http://news.bbc.co.uk have tens or hundreds of editors writing new content – i.e. new pages - all day long! Each one of those pages has rich, worthwile content of its own and a link back to its parent or the home page! That’s why the Home page Toolbar PR of these sites is 9/10 and the rest of us just get pushed lower and lower by comparison…

    • Principle: Content Is King! There really is no substitute for lots of good content…

     

    2. Give away something useful

    www.phpbb.com has a Toolbar PR of 8/10 (at the time of writing) and it has no big money or marketing behind it! How can this be?

    What the group has done is write a very useful bulletin board system that is becoming very popular on many websites. And at the bottom of every page, in every installation, is this HTML code:

    Powered by <a href="http://www.phpbb.com/" target="_blank">phpBB</a>

    The administrator of each installation can remove that link, but most don’t because they want to return the favour…

    Can you imagine all those millions of pages giving a fraction of a vote to www.phpbb.com? Wow!

    • Principle: Make it worth other people’s while to use your content or tools. If your give-away is good enough other site admins will gladly give you a link back.
    • Principle: it’s probably better to get lots (perhaps thousands) of links from sites with small PR than to spend any time or money desperately trying to get just the one link from a high PR page.

     

    A Discussion on Averages

    From the Brin and Page paper, the average Actual PR of all pages in the index is 1.0!

    So if you add pages to a site you’re building the total PR will go up by 1.0 for each page (but only if you link the pages together so the equation can work), but the average will remain the same.

    If you want to concentrate the PR into one, or a few, pages then hierarchical linking will do that. If you want to average out the PR amongst the pages then "fully meshing" the site (lots of evenly distributed links) will do that - examples 5, 6, and 7 in my above. (NB. this is where Ridings’ goes wrong, in his MiniRank model feedback loops will increase PR - indefinitely!)

    Getting inbound links to your site is the only way to increase your site's average PR. How that PR is distributed amongst the pages on your site depends on the details of your internal linking and which of your pages are linked to.

    If you give outbound links to other sites then your site's average PR will decrease (you're not keeping your vote "in house" as it were). Again the details of the decrease will depend on the details of the linking.

    Given that the average of every page is 1.0 we can see that for every site that has an actual ranking in the millions (and there are some!) there must be lots and lots of sites who's Actual PR is below 1.0 (particularly because the absolute lowest Actual PR available is (1 - d)).

    It may be that the Toolbar PR 1,2 correspond to Actual PR's lower than 1.0! E.g. the logbase for the Toolbar may be 10 but the Actual PR sequence could start quite low: 0.01, 0.1, 1, 10, 100, 1,000 etc...

    Finally

    PageRank is, in fact, very simple (apart from one scary looking formula). But when a simple calculation is applied hundreds (or billions) of times over the results can seem complicated.

    PageRank is also only part of the story about what results get displayed high up in a Google listing. For example there’s some evidence to suggest that Google is paying a lot of attention these days to the text in a link’s anchor when deciding the relevance of a target page – perhaps more so than the page’s PR…

    PageRank is still part of the listings story though, so it’s worth your while as a good designer to make sure you understand it correctly.

     

    Links

    About the Author

    Ian Rogers first used the Internet in 1986 sending email on a University VAX machine! He first installed a webserver in 1990, taught himself HTML and perl CGI scripting. Since then he has been a Senior Research Fellow in User Interface Design and a consultant in Network Security and Database Backed Websites. He has had an informal interest in topology and the mathematics and behaviour of networks for years and has also been known to do a little Jive dancing.

    This paper was sponsored by IPR Computing Ltd – specialists in Secure Networks and Database Backed Websites



      My Email :  bharath_m_7@yahoo.co.in 
      My Blogs: Tech blog   |  Fun blog


    Discover Yahoo!
    Have fun online with music videos, cool games, IM & more. Check it out!

    Yahoo! Groups Links

    Monday, June 06, 2005

    [tech4all] Alcatel 4020

    Hi Guys,

    I wonder if any of you had a chance to use the IP phone - ALCATEL 4020 .  what I want to know is does it support SIP. I am trying to set a small IP tel network using the alcatel 4020 and free SIP server from IPtel.org. I would appreciate any information in regards to this.

     

    Thank  you,

    Venkatesh

     

    __________________________________________________
    Do You Yahoo!?
    Tired of spam? Yahoo! Mail has the best spam protection around
    http://mail.yahoo.com


    Yahoo! Groups Links